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Abstract 

Los Alamos Neutron Science Center (LANSCE) operates a linear particle 

accelerator (LINAC) that is used for a number of scientific research projects. Due 

to the presence of harmful radiation, researchers are not allowed in the beam 

tunnel during operation. Since the beam tunnel is inaccessible, an autonomous 

mobile robot is to be developed and deployed in the tunnel, monitoring the 

accelerator during operation. The robot will present real time data for operators 

and scientists from sensors such as a video camera, thermal camera, 

microphones, and muon detectors; allowing for beam diagnostics previously 

unavailable.  

Localization is a fundamental step in autonomous navigation of mobile robots, 

answering the “where am I” question. For this project, an Extended Kalman Filter 

(EKF) algorithm is implemented as a positional estimator. The EKF relies on an 

odometric motion model to predict the robot’s position and LIDAR measurement 

data to update the robot’s position. The measurement model is based on 
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features extracted from the LIDAR point cluster using the Split-and-Merge 

algorithm, and the nearest neighbor algorithm associates the features to an a 

priori feature map of the beam tunnel. The predicted and measured positions are 

then joined using a weighted value by means of the Kalman gain. The 

effectiveness of this localization technique is demonstrated using the LabVIEW 

robotics simulator.  
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Chapter 1 

Introduction 

 

Mobile robotics have long been used in hazardous situations with an operator 

controlling the robot remotely, acting as eyes and ears to an uninhabitable 

environment. A trend has been moving towards fully autonomous robots being 

used in hazardous environments, and to be able to realize full autonomy, it is 

necessary to self-localize within that environment. 

Mobile robotics self-localization asks the question of “where am I”, which is the 

answer our research aims to solve in order for the robot to successfully navigate 

and complete its designated mission. An overview of the sensors used, robot 

model, data acquisition, localization strategy, and the simulation model will be 

presented. 

 

1.1 Background 

The Los Alamos Neutron Science Center (LANSCE) user facility is home to an 

800 MeV linear accelerator (LINAC), supplying multiple experimental areas with 

intense pulsed proton beam travelling 84 percent the speed of light. With the 

accelerator, LANSCE supports many different programmatic and scientific needs 

for defense and civilian research. With over a thousand user visits to the facility 

annually [1], and the production of medical isotopes used for cardiac imaging for 
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over 30,000 patients a month [2], it is crucial to ensure reliable operation of the 

accelerator. 

There are numerous systems working to keep the machine running during 

production that frequently fail and cause unnecessary downtime. Currently there 

are limited diagnostic tools used to monitor the status of these systems. It is of 

interest to gather as much information as possible to better predict and detect 

failures and help facilitate tuning of the beam during startup. Predictors of failure 

include elevated radiation levels, which indicate beam spill, and excess heat 

given off by components along the beam line, both of which can be measured 

using the proposed robot. 

Because of the radiation produced by proton interactions, it renders the beam 

tunnel inaccessible by personnel during production, hindering direct 

measurements that can be taken to provide beam status. With the use of a 

mobile robot in the tunnel, measurements can be taken safely from a remote 

location. To avoid the requirement of an operator taking data on a regular 

schedule, it makes sense to design the robot to be fully autonomous, reporting its 

findings after each tour of the beam tunnel.  

To achieve full autonomy a mobile robot must first be capable of self-localization. 

It is important so that it can navigate the tunnel accurately, providing reliable data 

from each measurement.  
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1.1.1 Accelerator Environment 

The linear accelerator tunnel is ¾ miles long and underground which houses the 

accelerator structures and supporting equipment. A cross section diagram of the 

tunnel can be seen in figure 1.1, depicting where the robot is deployed relative to 

the accelerator inside the tunnel. 

 

Figure 1.1: Accelerator Tunnel X-Section 

Because of the radiation and location of the accelerator underground, there are 

many design considerations to account for to help mitigate or eliminate potential 

issues. These issues will be discussed in later sections as they pertain to 

different aspects of the robot and in the localization strategy. 

 

 

Accelerator 

Robot 
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1.2 Research Overview 

The purpose of this research is to develop a localization strategy for a differential 

drive robot in a known indoor environment with sparse landmark features. To 

accomplish this, the Extended Kalman Filter (EKF) is employed. The EKF is a 

recursive algorithm that relates the current state to the previous estimate of the 

state using the state transition and measurement models. Because neither the 

state transition or measurement models are linear, Jacobians are used to 

linearize them such that Gaussian approximation is maintained. [3] 

To implement the EKF properly, the kinematics of the robot must be evaluated to 

develop the state transition model. Landmark acquisition is developed for the 

measurement update, and data acquisition algorithms are developed to minimize 

spurious measurements. 

The majority of this work is developed and tested using the LabVIEW Robotics 

Simulator environment as the beam tunnel has access requirements severely 

limiting real-world testing opportunities. The tunnel and robot chassis are 

modeled and imported into the robotics simulator to produce accurate results 

resembling real world operation in the tunnel. 

 

1.3 Outline of Thesis 

In chapter 2 the literature studied is reviewed. Articles establishing sensor 

selection, along with the feature extraction and data association techniques given 
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different applications is covered. An overview of localization strategies is 

presented, with special attention given to the EKF localization technique. 

The vehicle model of the robot is covered in chapter 3. The chassis and sensors 

selected are described. Kinematics equations of a rigid differential drive robot are 

formulated and expressed in vector form. Odometry is established using the 

kinematic model and encoders.  

Landmark acquisition is addressed in chapter 4, which makes use of multiple 

algorithms to deduce sensor data into something useful. Line extraction is 

performed utilizing successive edge following and Split-and-Merge algorithms. 

Landmarks such as corners, walls, and beam structures are then determined 

from the extracted line geometries. 

In chapter 5, the Extended Kalman Filter is discussed, and is presented in three 

segments. The prediction stage is first, and is based on the motion model of the 

robot. The next is the measurement update step, which is based on the 

measurement model, providing corrections to the state estimation and error 

covariance based on sensor observations. Data association ties the two together, 

in the form of the nearest neighbor algorithm, utilizing shared matrices comparing 

the measured landmarks to the map of the beam tunnel.  

In chapter 6 the LabVIEW Robotics simulator is reviewed. The beam tunnel and 

robot are modeled and imported into the simulator to best mimic conditions seen 

in the tunnel to provide an accurate representation of real obstacles. Results are 
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then gathered and analyzed after collecting robot tracking data as it traverses the 

tunnel in the simulation. 

A summary of the research is presented in chapter 7, along with future plans for 

the project beyond this thesis. 

  



 
7 

 

Chapter 2 

Literature Review 

 

In this chapter an overview of the process and reasoning behind the decision to 

use the Extended Kalman Filter (EKF) as the state estimator is examined. In 

conjunction with the EKF, sensors on the robot are assessed for their viability in 

the system. Supporting algorithms such as line extraction and data association 

are also reviewed for their integration into the localization strategy presented. 

 

2.1 Mobile Robot Localization 

There are numerous localization strategies that can be implemented, as was 

discussed by Jensfelt [4]. Of these approaches, the Extended Kalman Filter 

(EKF) is the most advantageous due to the fact that the EKF is reliant on a 

known map, or hypothesis of landmarks in the environment. Since a map of the 

beam tunnel can be defined from CAD drawings, a mapping algorithm such as 

the Simultaneous Localization and Mapping (SLAM) techniques [5, 6] are not 

necessary.  

The EKF is a landmark based localization algorithm that fuses information from 

multiple sensors, such as the LIDAR and encoder odometry data. The LIDAR 

measurement model and encoder odometry model are linearized as they are 

non-linear, to provide Gaussian estimates through the Kalman filter. [7] 
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The EKF consists of two major steps in the estimation of the robot state. The first 

step is predicting the robot state obtained from odometric data. Odometry is the 

measurement of distance travelled using data obtained from sensors, specifically 

encoders in our application, which are coupled to the motors. Motor rotation 

measurements can then be used to calculate the motion of the robot using the 

kinematic model. The prediction is also used to estimate where the landmarks 

should be based on the aforementioned odometry. When a landmark is 

observed, the difference is taken between the observed and predicted position, 

referred to as the innovation [5]. Because odometry is notorious for producing 

error, a higher confidence is placed upon the observation model from the LIDAR 

sensor. The Kalman gain is employed to weigh the observation data as more 

reliable [8, 9]. The EKF is recursive such that multiple observations can be 

processed and only the last estimate is necessary to provide the current state 

estimate. 

 

2.2 Sensors 

There are several types of sensors used on mobile robotics for the purpose of 

localization. Types of sensors used in mobile robotics range from GPS, magnetic 

compasses, dead reckoning, guide-path-following, and time-of-flight (TOF) range 

finding sensors [10]. The selection process of the various types of sensors are 

reviewed, examining the feasibility and integration into the robot system. 
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Given the robot’s environment, some sensors are not a viable option. The tunnel 

is underground and encased in concrete, thus GPS is not an option as the signal 

cannot penetrate into the tunnel. High powered magnets are used to focus the 

proton beam, which would distort magnetic compass readings rendering its data 

unreliable. During accelerator maintenance periods, equipment is rearranged 

which can obstruct guide paths and limit the flexibility of the robot to be able to 

take data effectively given different missions through its use. TOF and dead 

reckoning sensors are left as practical options for the robot. 

Sensors that measure the time taken for emitted energy to travel to a target and 

reflect back is considered to be of the TOF family of ranging sensors [10], such 

as light detection and ranging (LIDAR) or ultrasonic sensors. Given the resolution 

and accuracy that LIDAR can provide over ultrasonic sensors, the LIDAR was 

selected as the primary measurement device. 

In addition to the LIDAR, the motor’s magnetic encoders are incorporated to aid 

in localizing the robot; providing necessary data for dead reckoning 

measurements. The magnetic encoders use Hall Effect sensors that pick up the 

presence of a ferrous metal gear tooth. With each passing tooth, a count can be 

made that relates to an angular displacement of the motors. Advantages of using 

a magnetic encoder include durability to vibrations caused by robot motion [11]. 

The disadvantage is that there is no way to determine direction since it is not a 

quadrature encoder. The sensors best fitting for this project are TOF and dead 

reckoning, due to environmental constraints, range, and the accuracy necessary 

for localization. 
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2.3 Feature Extraction Methods 

The selected feature extraction method is reliant on the LIDAR sensor point 

cloud output. From the LIDAR point cloud, geometries can be extracted that 

represent the environment accurately. Nguyen et al. details many of the various 

methods to extract features from the environment [12]. Through the comparisons 

made from Nguyen’s research, an effective feature extraction strategy was 

developed. Nguyen describes employing a clustering algorithm to filter out noisy 

points and segments the points into adjacent clusters before implementing the 

various line extraction techniques known as Successive Edge Following (SEF).  

To further understand the SEF, Siadat et al. [13] described the algorithm, and 

performed a comparison between the SEF and other segmentation methods in 

different environment representations such as complex and structured 

indoor/outdoor environments. Since the beam tunnel best represents a structured 

indoor environment, those results are the most applicable. In Siadat’s research 

the SEF excelled in both computational time and in reducing the amount of error. 

The SEF algorithm segments points into contiguous clusters by taking the 

distance between adjacent points and comparing it to a threshold distance. If the 

Euclidean distance between adjacent points is greater than the threshold, the 

point cluster is segmented. However, in using LIDAR, the distance between 

adjacent points will be greater the further the sensed object is due to the 

magnification of distance from angular measurements. Yan Bu et al. [14] solve 

this problem by incorporating an adaptive threshold which is reliant on the mean 

polar radius of the point cloud, and the angle between adjacent points. 



 
11 

 

In Nguyen’s research [12] the most successful algorithm for defining line 

segments was the Split-and-Merge algorithm, also known as the Ramer-

Douglas-Puecker or iterative end point algorithm [15]. The data was taken in a 

structured indoor environment. The Split-and-Merge algorithm performed the 

quickest and provided the most reliable and precise data as can be seen in 

Figure 2.2. 

 

Figure 2.1: Line Extraction Algorithm Performance by Nguyen et al [12] 

Split-and-merge is a well-known and widely used recursive algorithm that takes 

the first and last points from a cluster and calculates the furthest perpendicular 

distance point in the cluster from the line segment. If the perpendicular distance 

is greater than a threshold distance, the algorithm will split the cluster in two and 

continue recursively until no more splits are made [12, 16, 17]. From the Split-

and-Merge we are left with only the line segments as perceived by the LIDAR. 
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2.4 Data Association 

Between the map and observation model of the robot, we must determine which 

landmark the observed feature corresponds to. Cooper [18] performed a 

comparison of various data association techniques in EKF-SLAM applications, 

most notably the Individual Compatibility Nearest Neighbor (ICNN) algorithm, 

which shares components with the EKF. 

The ICNN is based on establishing the compatibility between an observation and 

landmarks using Mahalonobis distance. Mahalonobis distance is the distance of 

an observation from a distribution set [19]. 

𝐷𝐷𝑀𝑀2 =  (�⃑�𝑥 − �⃑�𝑦)𝑇𝑇𝑆𝑆−1(�⃑�𝑥 − �⃑�𝑦)        (2.1) 

Where �⃑�𝑥 and �⃑�𝑦 are random vectors, and S is the associated covariance. In this 

definition the Mahalonobis distance is also known as the generalized squared 

interpoint distance, and describes a similarity measure [20]. In our case we have 

observations and the landmark map as the vectors. The ICNN deems the pairing 

with the smallest Mahalonobis distance as compatible if it is below a Chi-Squared 

distribution confidence level threshold criterion as the Mahalonobis follows a Chi-

Squared distribution. Because ICNN is a greedy algorithm [21], never 

reevaluating a pairing with a more compatible landmark, an additional function 

will be developed to ensure we are associating the correct landmark. 
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2.5 Summary 

A review of localization strategies and associating topics has been presented, 

from which a strategy can be derived to suit our needs. It has been demonstrated 

that while mobile robot localization has been a topic of focus, there are still faults 

of various approaches, such as EKF divergence, or misassociations of data 

association techniques that have been investigated before implementation.   
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Chapter 3 

Vehicle Model 

 

In this chapter we discuss the vehicle model, which includes the chassis, 

sensors, inverse kinematics, and odometry. The first two sections provide the 

hardware specifications, with the last two describing the motion using inverse 

and forward kinematics. 

 

3.1 Chassis 

The chassis used in the simulation is a Dr. Robot Jaguar Lite chassis, a tracked 

mobile robot platform, equipped with 24V DC motor actuating each track and 

integrated magnetic encoders [22]. The chassis is modeled in SolidWorks and 

imported into the LabVIEW robotics simulator as shown in figure 3.1. 

 

Figure 3.1: Robot Chassis CAD Model 
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The Dr. Robot platform was inherited from a previous project [23] and is made for 

rugged outdoor terrain. Due to the rugged terrain design of the robot, the paddled 

tracks induce vibrations into the chassis causing some slipping, adding error to 

the odometry model. 

 

3.1.1 Sensors 

In order to achieve localization, the robot needs to be provided with sensors 

suitable for its environment. It is crucial the sensors are selected appropriately so 

we can detect the robot’s surroundings accurately and repeatedly with as little 

error as possible. In this section we discuss the sensors employed to accomplish 

localization and why the sensors used were selected. 

 

3.1.1.1 LIDAR 

In order for the robot to localize itself, it needs a way to sense the environment 

around it. Hokuyo URG-04LX-UG01 LIDAR sensor was selected to be used due 

to its small size and device driver support provided in the LabVIEW robotics 

simulator. 
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Figure 3.2: Hokuyo URG-04LX-UG30 LIDAR [24] 

The Hokuyo LIDAR sensor has a scan angle of 240° and angular resolution of 

0.36°, which gives us 667 data points per scan. The sensing range of the sensor 

is 4 meters with an accuracy of 3% of the detected distance and a resolution of 

1mm. The sensor performs scans at 10 Hz, which is fast enough, relative to the 

robot velocity, that it doesn’t miss potential obstacles [24]. 

LIDAR determines range by measuring the phase shift between the emitted laser 

signal, and the reflected signal. Because the laser possesses the properties of 

light, it also obeys the formula for light as shown in Equation 3.1, where c is the 

speed of light (meters/second), lambda is the wavelength (meters), and f is the 

frequency (Hertz). 

𝑐𝑐 =  𝜆𝜆𝜆𝜆    (3.1) 

The laser is transmitted at a known frequency, and the speed of light is constant, 

thus the wavelength can be found. The wavelength is necessary to determine the 



 
17 

 

distance D in meters, travelled by the laser signal as shown in Equation 3.2, 

where 𝜃𝜃 is the phase difference between the transmitted laser and reflected laser 

signals.  [25] 

𝐷𝐷 =  𝜆𝜆
4𝜋𝜋
𝜃𝜃    (3.2) 

For the LIDAR to perform a scan, the laser is pulsed onto a rotating mirror. Each 

reflected pulse represents a point in the scan. LIDAR range-finding schematic is 

shown in figure 3.3. 

 

Figure 3.3: LIDAR Range-finding Schematic [25] 

The LIDAR sensor was simulated in the LabVIEW robotics module as if the 

hardware were present, utilizing the sensor’s communication protocol SCIP2.0 to 

acquire data scans. Software was available through the robotics module, 

although some adjustments to the code were necessary to obtain the 10 Hz 

scanning frequency. 
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3.1.1.2 Encoders 

Using the LabVIEW robotics simulator, absolute encoders are provided, that 

outputs the shaft position in radians, from which the motion is deduced by taking 

the change of position as opposed to a count. With each angular difference, an 

angular velocity is obtained, which can be related to a robot body velocity given 

the gear ratio and cog radius. The kinematic model is to be covered in the 

following section 3.2. 

In practice incremental rotary magnetic encoders are used, one mated to each 

DC motor to provide information regarding the robot motion. Given that these 

encoders are not quadrature, direction is not inherently known from the device, 

and will be assumed based on the control input; however within the simulation it 

was not an issue. 

 

3.2 Inverse Kinematics 

The main goal of the inverse kinematics is to transform the desired robot frame 

velocities to motor angular velocities. The equations that describe the system are 

derived from Kelly’s constrained kinematics for mobile robots [26]. LabVIEW 

robotics module software provides built in functions to accomplish the kinematic 

model, but a quick overview is presented. 
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3.2.1 Constraints 

Differential drive motion is characterized by two non-holonomic constraints and is 

derived by making two assumptions. The first constraint is a pure rolling 

condition, which means that each track can roll forward or backward in the 

direction of the track velocity without slipping against the floor contact surface. 

The track velocity can be calculated as shown in Equation 3.3, where r is the cog 

radius, �̇�𝜑 is the angular velocity, and v is the track velocity [27]. 

�
𝑣𝑣𝑅𝑅
𝑣𝑣𝐿𝐿� =  �

𝑟𝑟�̇�𝜑𝑅𝑅
𝑔𝑔
𝑟𝑟�̇�𝜑𝐿𝐿
𝑔𝑔

�      (3.3) 

The second non-holonomic constraint is that the tracks cannot move laterally, 

meaning that �̇�𝑥𝑟𝑟 is always zero in the local robot frame. The matrix form is shown 

in Equation 3.4 as derived by Kelly [26]. 

�̇�𝑥𝑟𝑟 = [sin 𝜃𝜃 − cos 𝜃𝜃 0] �
�̇�𝑥
�̇�𝑦
�̇�𝜃
� =  0;     (3.4) 

The local frame of the vehicle is assumed to be located in the center of the 

tracks, which corresponds to the center of the robot chassis, and the 

instantaneous center of curvature (ICC) when turning in place. No complex 

maneuvers are used in the simulation; only one velocity can be applied at a time, 

so this assumption will suffice. 
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3.2.2 Model 

The purpose of the robot kinematic model is to determine the motor velocity 

setpoints as a function of the desired robot frame velocity. 

(𝜑𝜑�̇�𝑅 ,𝜑𝜑�̇�𝐿) = 𝜆𝜆(�̇�𝑥𝑟𝑟 , �̇�𝑦𝑟𝑟 , �̇�𝜃𝑟𝑟 ,𝑔𝑔, 𝑟𝑟, 𝑙𝑙)   (3.5) 

where 𝜑𝜑�̇�𝑅 and 𝜑𝜑�̇�𝐿 are the motor angular velocities, �̇�𝑥 is the lateral velocity, �̇�𝑦 is the 

forward velocity, �̇�𝜃 (or 𝜔𝜔) is the angular velocity in the robot frame, 𝑔𝑔 is the gear 

ratio, 𝑟𝑟 is the track cog radius, and 𝑙𝑙 is the track seperation distance. 

 

Figure 3.4: Kinematic Diagram 

 

Inverse kinematics will be used to convert the local robot frame velocities to the 

track velocities as shown in Equation 3.6 as derived by Kelly [26]. 
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�
𝑣𝑣𝑅𝑅
𝑣𝑣𝐿𝐿� = �

�̇�𝑦𝑟𝑟 + �̇�𝜃𝑟𝑟
𝑙𝑙
2

�̇�𝑦𝑟𝑟 −  �̇�𝜃𝑟𝑟
𝑙𝑙
2

� =  �
1     𝑙𝑙

2
 

1 − 𝑙𝑙
2
 
� �
�̇�𝑦𝑟𝑟
�̇�𝜃𝑟𝑟
�  (3.6) 

The motor angular velocities can then be related to the track velocities by 

rearranging Equation 3.3, thus producing Equation 3.7. 

��̇�𝜑𝑅𝑅�̇�𝜑𝐿𝐿
� = �

𝑔𝑔 𝑣𝑣𝑅𝑅
𝑟𝑟

𝑔𝑔 𝑣𝑣𝐿𝐿
𝑟𝑟

�    (3.7) 

The calculated motor angular velocity can then be input into the motor to achieve 

the desired robot chassis velocity. 

 

3.3 Odometry 

Odometry is the estimate of distance travelled by the summation of track 

displacement at each time step. To achieve odometry, a rotary encoder is mated 

to the motor, and measures the amount of rotation experienced by the motor. 

Incremental encoders are typical and output a count value, but in the simulation 

absolute encoders are employed, providing the angular position. The 

displacement of each track is calculated as shown in Equation 3.8, where r is the 

cog radius, 𝜑𝜑 is the angular position of the motor, and g is the gear ratio. [26]  

�∆𝑠𝑠𝑟𝑟∆𝑠𝑠𝑙𝑙
� =  �

�𝑟𝑟𝜑𝜑𝑟𝑟
𝑔𝑔
�
𝑛𝑛
− �𝑟𝑟𝜑𝜑𝑟𝑟

𝑔𝑔
�
𝑛𝑛−1

�𝑟𝑟𝜑𝜑𝑙𝑙
𝑔𝑔
�
𝑛𝑛
− �𝑟𝑟𝜑𝜑𝑙𝑙

𝑔𝑔
�
𝑛𝑛−1

�   (3.8) 

In order to convert displacement to the change in Cartesian coordinates the 

displacement and heading change are calculated in Equations 3.9 and 3.10. 
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∆𝑠𝑠 =  ∆𝑠𝑠𝑟𝑟+ ∆𝑠𝑠𝑙𝑙
2

     (3.9) 

∆𝜃𝜃 =  ∆𝑠𝑠𝑟𝑟− ∆𝑠𝑠𝑙𝑙
2𝑙𝑙

     (3.10) 

With the change in displacement and heading, the change in Cartesian 

coordinates can be calculated as shown in Equation 3.11. [28] 

�
∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃
� =  

⎣
⎢
⎢
⎢
⎡∆𝑠𝑠 ∗ cos �𝜃𝜃 + ∆𝜃𝜃

2
�

∆𝑠𝑠 ∗ sin �𝜃𝜃 + ∆𝜃𝜃
2
�

∆𝑠𝑠𝑟𝑟−∆𝑠𝑠𝑙𝑙
2∗𝐿𝐿 ⎦

⎥
⎥
⎥
⎤
    (3.11) 

Since the LIDAR sensor is not mounted over the instantaneous center of rotation 

of the robot, but offset in the y-axis, it has to be compensated. In order to 

compensate, the heading of the robot is tracked such that the position can be 

calculated as if the LIDAR were on an arm rotating about the instantaneous 

center of rotation (ICR) as shown in Equation 3.12, where d is the distance of the 

offset in the y-axis. 

�
𝑥𝑥
𝑦𝑦
𝜃𝜃
� = �

𝑥𝑥𝑛𝑛−1 + ((𝑑𝑑 cos 𝜃𝜃)𝑛𝑛 − (𝑑𝑑 cos 𝜃𝜃)𝑛𝑛−1)
𝑦𝑦𝑛𝑛−1 + ((𝑑𝑑 sin𝜃𝜃)𝑛𝑛 − (𝑑𝑑 sin𝜃𝜃)𝑛𝑛−1)

𝜃𝜃
�  (3.12) 

 

3.4 Summary 

With the chassis and sensors, we now have a platform to maneuver and sense 

the surroundings. Given the chassis we were able to model the kinematics of the 

robot and now have the equations to give us corresponding motor velocity values 

given the desired robot frame velocities.  
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Chapter 4 

Landmark Acquisition 

 

For localization to be plausible, landmarks must be present in the environment, to 

be used as references for the robot to reference its position when observed. 

Landmarks are geometric features in the environment that can be easily 

observed and distinguished such as walls, corners, or static objects in the room. 

Landmarks must also be capable of being extracted from the LIDAR point cloud 

repeatedly and accurately. 

Landmark acquisition is composed of three major sections. The first describes 

what constitutes a valid and re-observable landmark. The second describes how 

the point cloud data points are transformed into meaningful line segments. Lastly, 

line geometries are evaluated to identify features as potential landmarks from the 

environment, known as feature extraction. 

 

4.1 Landmark Selection 

Landmarks are features in the environment that can be distinguished repeatedly 

no matter the orientation of the robot. Landmarks are used by the robot to 

localize itself within its environment, serving as known locations to reference. 

Choosing the correct landmarks for localization is crucial, and given the beam 

tunnel floor plan and surroundings, there are few features that can be extracted. 
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Major factors in considering landmarks include repeatability, accuracy, 

uniqueness, and frequency; too few landmarks can cause the robot to diverge if 

error accumulates between landmark observations. Too many can cause 

misassociations from one landmark to the next. [5] 

Beam structures, corners, and the straight walls of the beam tunnel can all serve 

as static landmarks, can be seen repeatedly, can be accurately extracted, and 

are frequent enough to prevent the localization strategy from diverging. The 

beam structures are I-beams that support the beam pipe and associated 

equipment, and because of their unique shape, differentiating them from the rest 

of the tunnel is possible. Corners are unique and can be extracted by checking 

orthogonality and close proximity of the line segments to each other, although 

they are sparse in the tunnel. The tunnel wall can be used for maintaining the 

bearing of the robot, which in the extended distance covered in the tunnel, can 

amount to significant error. 

 

4.2 Line Extraction 

To define the observations of features as potential landmarks, we must first 

convert the LIDAR point cloud into more useful data. Given the landmark 

selections made, their geometries can be defined by lines, thus the LIDAR point 

cloud is converted into line segments that can then be evaluated as landmark 

observations. A typical raw LIDAR scan, with the sensor centered at the origin, 

can be seen in Figure 4.1. 
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Figure 4.1: Raw LIDAR Point Cloud 

Prior to processing the data, extraneous LIDAR points are removed to minimize 

complexity. The Successive Edge Following (SEF) algorithm is then performed to 

segment the data point cloud into smaller contiguous clusters based on distance 

differences from point to adjacent point. The Split-and-Merge algorithm is then 

employed to split segments further, should the perpendicular distance from the 

first and last points deviate too far. If not, then the algorithm will merge all the 

points into a single, two-point line segment. These algorithms are described in 

the following sections 4.2.1 and 4.2.2. 

 

4.2.1 Successive Edge Following 

The Successive Edge Following (SEF) algorithm segments the LIDAR point 

cloud into contiguous clusters of points based on a Euclidean distance threshold 

between adjacent points [14]. Since the LIDAR output is in polar coordinate form, 
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the data is converted into SI units and transformed from polar to Cartesian, 

enabling us to calculate Euclidean distance. 

𝑥𝑥 = 𝑟𝑟 ∗ cos 𝜃𝜃     (4.1) 

𝑦𝑦 = 𝑟𝑟 ∗ sin 𝜃𝜃     (4.2) 

The improved SEF, as described by Yan [16], incorporates an adaptive threshold 

distance for segmentation. Yan’s method is preferable as the distance between 

adjacent points becomes greater the further the points extend from the LIDAR. 

The adaptive threshold distance ∆𝐷𝐷 is deduced from the mean of the range of 

the scan data as shown in Equation 4.3 and the angle between points k, which is 

a constant. The adaptive threshold is formulated as shown in Equation 4.4. 

�̅�𝑟 =  ∑ 𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

;      (4.3) 

∆𝐷𝐷 = 𝑘𝑘�̅�𝑟     (4.4) 

Each consecutive point in the data set is iterated through, calculating the 

Euclidean distance between adjacent points as shown in Equation 4.5. That 

distance is compared to the adaptive distance threshold ∆D Equation 4.6. 

𝐷𝐷(𝑖𝑖, 𝑖𝑖 + 1) =  �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖+1)2   (4.5) 

𝜆𝜆(𝑘𝑘; 𝑗𝑗; 0,1) = �𝐷𝐷
(𝑖𝑖, 𝑖𝑖 + 1) < ∆𝐷𝐷;   [𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖], 𝑗𝑗 + 1
𝐷𝐷(𝑖𝑖, 𝑖𝑖 + 1) ≥ ∆𝐷𝐷;  𝑘𝑘 + 1, 𝑗𝑗 = 0    (4.6) 

If the distance between adjacent points is greater than the adaptive threshold, 

the cluster is segmented from the point cloud. [14] 



 
27 

 

 

Figure 4.2: Successive Edge Following Data Point Post Process 

The resulting segmentation from the SEF can be seen in figure 4.2, where each 

cluster of points can be differentiated by color. 

 

4.2.2 Split-and-Merge 

 Split-and-merge is a Nlog(N) complex recursive algorithm [12]. Given the output 

from the SEF is an array of point clusters after segmentation, Split-and-Merge 

processes each set of points individually. Within each point cluster, a line is fit 

from the first to last point, and the furthest perpendicular distance is calculated. 

Perpendicular distance is compared to a distance threshold, if the distance is 

less than the threshold, the line segment is passed on and the next set is 

considered. Otherwise the set is segmented at that point and the process is 

continued recursively until no more splits are performed. After the entire data set 
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is considered, collinear segments are merged [12, 29]. The Split-and-Merge 

algorithm can be visualized in Figure 4.3. 

 

Figure 4.3: Split-and-Merge Procedure [17] 

Prior to Split-and-Merge, we rotate the point clusters by -π/2 radians such that y-

axis positive is bearing origin in the local robot frame using rotation matrix in 

Equation 4.7. 

�𝑥𝑥′𝑦𝑦′� = 𝑅𝑅𝜃𝜃 �
𝑥𝑥
𝑦𝑦� ;𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑅𝑅𝜃𝜃 = � cos 𝜃𝜃 sin𝜃𝜃

−sin𝜃𝜃 cos 𝜃𝜃�  (4.7) 

Any set that contains a single point is discarded, then the first and last points in 

the cluster fitted to create a line. The points in the cluster are iterated through, 

calculating the perpendicular distance; which is the shortest distance between 

the fitted line and the point in question. [17] 
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𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝.𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑. =  |(𝑦𝑦2−𝑦𝑦1)𝑥𝑥0−(𝑥𝑥2−𝑥𝑥1)𝑦𝑦0+𝑥𝑥2𝑦𝑦1−𝑦𝑦2𝑥𝑥1|
�(𝑦𝑦2−𝑦𝑦1)2+(𝑥𝑥2−𝑥𝑥1)2

   (4.8) 

Here, the first point is (x1, y1), the second point is (x2, y2), and the point of interest 

is (x0, y0). 

The maximum perpendicular distance is identified along with the point index, to 

compare with the distance threshold. If the largest distance is greater than the 

specified tolerance, the line segment is split at this point and the two segmented 

subarrays are passed back into itself and run recursively until no more splits are 

made. 

From the Split-and-Merge algorithm some remnants exist that are too short for 

feature identification. To minimize the associated error, Euclidean distance is 

employed to filter out any line segment that is less than a decimeter in length, 

simultaneously filtering out any singular points as well. 

 

Figure 4.4: Split-and-Merge Line Segments 
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The results from the Split-and-Merge algorithm are shown in figure 4.4, where point 

clusters from the SEF have been converted into line segments. All three types of 

features are present in this scan and will be discussed in the following section 4.3 

feature extraction. 

 

4.3 Feature Extraction 

For a feature to be considered a landmark, it must meet important criteria. First it 

must be highly visible so that the robot can observe it from any angle. Second, it 

must be easily determined with simple geometries so that the LIDAR can detect 

the feature repeatedly and reliably. Lastly, it must be unique such that the feature 

will not be erroneously detected. In the beam tunnel there are three distinct 

features that meet these criteria: corners, beam support structures, and the 

tunnel wall. In this section, we will discuss the methods used to extract these 

features from the line segments obtained from the previous section. 

 

4.3.1 Corner Extraction 

Corners are readily visible by LIDAR scans, and although fairly sparse, present 

themselves as good landmark candidates. Given that the LIDAR scan has 

already been processed into line segments, orthogonality can be calculated 

using dot product as shown in Equation 4.9.  

𝑙𝑙𝑛𝑛 ⋅ 𝑙𝑙𝑛𝑛+1 = �𝑙𝑙𝑛𝑛��𝑙𝑙𝑛𝑛+1� cos 𝜃𝜃    (4.9) 
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Where θ is the angle between ln and ln+1, translating to Equation 4.10 using dot 

product cosine rule, also known as the sliding window corner detection [17]. 

𝜃𝜃 = 𝑎𝑎𝑐𝑐𝑎𝑎𝑠𝑠 � 𝑙𝑙𝑛𝑛⋅𝑙𝑙𝑛𝑛+1
�𝑙𝑙𝑛𝑛��𝑙𝑙𝑛𝑛+1�

�    (4.10) 

If the angle between line segments is within 0.03 radians the intersecting point 

between them is calculated. The intersection point is found using determinants in 

line-line intersection as shown in Equations 4.11 and 4.12. 

𝑋𝑋𝑥𝑥 = �(𝑥𝑥1𝑦𝑦2−𝑦𝑦1𝑥𝑥2)(𝑥𝑥3−𝑥𝑥4)−(𝑥𝑥1−𝑥𝑥2)(𝑥𝑥3𝑦𝑦4−𝑦𝑦3𝑥𝑥4)
(𝑥𝑥1−𝑥𝑥2)(𝑦𝑦3−𝑦𝑦4)−(𝑦𝑦1−𝑦𝑦2)(𝑥𝑥3−𝑥𝑥4) �   (4.11) 

𝑋𝑋𝑦𝑦 = �(𝑥𝑥1𝑦𝑦2−𝑦𝑦1𝑥𝑥2)(𝑦𝑦3−𝑦𝑦4)−(𝑦𝑦1−𝑦𝑦2)(𝑥𝑥3𝑦𝑦4−𝑦𝑦3𝑥𝑥4)
(𝑥𝑥1−𝑥𝑥2)(𝑦𝑦3−𝑦𝑦4)−(𝑦𝑦1−𝑦𝑦2)(𝑥𝑥3−𝑥𝑥4) �   (4.12) 

The intersection point is the location of the corner feature, as derived from the 

line segments. 

 

4.3.2 Beam Support Structure Feature Extraction 

Beam support structures are located frequently along the tunnel and have a fixed 

position. The structures are all similar in their construction, I-beams mounted 

back to back as can be seen in figure 4.5.  
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Figure 4.5: Simulated Beam Support Structure Feature 

The protruding fins of the I-beams do not meet the length requirement set by the 

Split-and-Merge algorithm and is filtered out. These features therefore resemble 

consecutive collinear line segments. 

To extract the feature, collinearity is checked using the following equality. 

𝐴𝐴𝐴𝐴�����⃑ + 𝐴𝐴𝐵𝐵�����⃑ + 𝐵𝐵𝐷𝐷�����⃑ = 𝐴𝐴𝐷𝐷�����⃑      (4.13) 

Where 𝐴𝐴𝐴𝐴�����⃑  is the first line segment, and 𝐵𝐵𝐷𝐷�����⃑  is the second line segment 

representing the beam structure as can be seen in figure 4.6. 
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Figure 4.6: Beam Support Structure Line Segment Geometry 

If the sum is approximately equal to 𝐴𝐴𝐷𝐷�����⃑ , a point is interpolated at the midway 

point between the two-line segments, representing the beam support structure 

position and is accepted as the feature. 

 

4.3.3 Wall Feature Extraction 

Because of the long distances travelled by the robot, heading error causes 

significant Abbe error to accumulate, which contributes to the overall positional 

error. Abbe error is the magnified positional deviation over a travelled distance 

due to heading error, and can be calculated in Equation 4.14. [30] 

𝜀𝜀 = 𝑑𝑑 tan𝜃𝜃     (4.14) 

Where ε is the abbe error, d is the distance travelled, and θ is the heading error 

of the robot as depicted in figure 4.6.  

A 

B 
C 

D 

𝐴𝐴𝐴𝐴�����⃑  

𝐵𝐵𝐷𝐷�����⃑  
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Figure 4.7: Abbe Error Illustration 

Because the tunnel contains a long straight wall on one side of the beam tunnel, 

it is used to constrain the Abbe error accumulation, providing an accurate 

reference for the bearing of the robot. To accomplish this, the line segments 

need to represent the wall with high confidence and spurious line segments need 

to be removed from consideration. A series of validation gates are established to 

ensure the spurious segments are not selected, which will cause divergence. The 

first gate ensures the line segment is greater than three meters from robot origin 

in the world map, which in the global map there are no other geometries other 

than the tunnel wall from that distance from origin. The second gate checks the 

length of the line segment by calculating the Euclidean distance from Equation 

4.5 from point to point, and ensures it exceeds 2 meters before acceptance. The 

line segment length is important because in the tunnel there is not a geometry 

with a line segment length greater than 2 meters outside of the tunnel wall. 

Between the two criteria, spurious segments are avoided and the line segment is 

associated to the wall correctly. 

If the line segment is believed to represent the wall, the robot bearing θ is 

calculated using the atan2 function as shown in Equation 4.15.  
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    𝜃𝜃 =  𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎2(𝑦𝑦2 − 𝑦𝑦1, 𝑥𝑥2 −  𝑥𝑥1)   (4.15) 

The bearing is held with high confidence and replaces the EKF prediction for 

bearing as it was found to not be as accurate or frequent enough to prevent the 

accumulated Abbe error. 

 

4.4 Summary 

From the LIDAR point cloud we were able to produce high accuracy line 

segments that represent the beam tunnel using the SEF and Split-and-Merge 

algorithms. It was found that these algorithms allow for some erroneous line 

segments that had to be filtered out to promote robust feature extraction by 

limiting line segment length. 

By running the LIDAR in the simulation, features were selected by what could be 

identified easily and repeatedly. From that knowledge, geometric principles were 

applied to confirm the features as represented by line segments.  
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Chapter 5 

Localization 

 

Following the successful implementation of landmark acquisition and kinematics, 

the Extended Kalman Filter (EKF) state estimation technique can be exploited to 

achieve localization when paired with a data association algorithm. Data 

association is an important step for maintaining accurate robot position. To 

achieve data association, the Individual Compatibility Nearest Neighbor (ICNN) 

algorithm is implemented as it works well with the EKF, utilizing similar principles. 

The process is broken up into three primary steps: the prediction step of the EKF, 

ICNN data association, and the measurement update of the EKF. The processes 

of the EKF and ICNN algorithms will be discussed in this chapter. 

 

5.1 Extended Kalman Filter 

The Extended Kalman Filter (EKF) is a state estimation algorithm for non-linear 

systems and consists of two primary steps: a prediction based on the motion 

model, and a measurement update based on the measurement model. [6, 8, 9] 

Figure 5.1 shows the block diagram representing the EKF. 
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Figure 5.1: Extended Kalman Filter Block Diagram 

The EKF is a filter in the sense that it filters, or minimizes the Gaussian noise and 

error in estimating the current state of the robot, linearizing the state transition 

and measurement model about the mean and covariance of the current state. 

The EKF became a prime candidate for localizing in the beam tunnel as it relies 

on a map for the measurement model as a reference. Given that the beam tunnel 

is a structured environment, landmark locations are easily identified as presented 

in chapter 4. 
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5.1.1 Initialization 

For the EKF to execute effectively, the initial conditions must be well known. The 

initial conditions consist of the state matrix, and the error covariance matrix. The 

state matrix consists of the robot position, heading, and landmark positions. The 

state matrix is a 3+2n size column matrix where the first three rows represent the 

robot state, and consecutive pairs are landmark positions and can be seen in 

Equation 5.1. [5] 

𝑋𝑋 =  

⎣
⎢
⎢
⎢
⎡
𝑥𝑥𝑟𝑟
𝑦𝑦𝑟𝑟
𝜃𝜃𝑟𝑟
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖 ⎦
⎥
⎥
⎥
⎤
     (5.1) 

The estimation error covariance matrix must be initialized as well, and is set to be 

a 3+2n x 3+2n size identity matrix where n is the number of landmarks. The 

matrix is set to identity so that the robot position and landmark locations are 

independent initially and correlated as the robot observes landmarks.  

 

5.1.2 Motion Update 

The motion model from chapter 3, which produces the change in the robot state 

using odometry, is used for the robot’s prediction step. From there we can derive 

the predicted state transition matrix 𝜆𝜆(𝑋𝑋, 𝑢𝑢). 

𝜆𝜆(𝑋𝑋, 𝑢𝑢) =  𝑋𝑋− =  �
𝑥𝑥 +  ∆𝑥𝑥
𝑦𝑦 +  ∆𝑦𝑦
𝜃𝜃 +  ∆𝜃𝜃

� =  �
𝑥𝑥 +  ∆𝑠𝑠 𝑐𝑐𝑎𝑎𝑠𝑠𝜃𝜃
𝑦𝑦 +  ∆𝑠𝑠 𝑠𝑠𝑖𝑖𝑎𝑎𝜃𝜃
𝜃𝜃 +  ∆𝜃𝜃

�   (5.2) 
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To incorporate the predicted state transition matrix, it needs to be linearized. To 

linearize, the Jacobian of the state transition matrix 𝜆𝜆(𝑋𝑋,𝑢𝑢) needs to be 

calculated. The state transition Jacobian derivation is shown in Equation 5.3. [8] 

𝐹𝐹 = 𝐽𝐽𝑓𝑓(𝑥𝑥,𝑦𝑦,𝜃𝜃) =  

⎣
⎢
⎢
⎢
⎡
𝛿𝛿𝑋𝑋1
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋1
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋1
𝛿𝛿𝜃𝜃

𝛿𝛿𝑋𝑋2
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋2
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋2
𝛿𝛿𝜃𝜃

𝛿𝛿𝑋𝑋3
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋3
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋3
𝛿𝛿𝜃𝜃 ⎦
⎥
⎥
⎥
⎤

=  �
1 0 −𝑠𝑠𝑖𝑖𝑎𝑎𝜃𝜃∆𝑠𝑠
0 1 𝑐𝑐𝑎𝑎𝑠𝑠𝜃𝜃∆𝑠𝑠
0 0 1

�  (5.3) 

The process noise Q, where C is a representation the odometry accuracy, is 

formulated using Equation 5.4. [5] 

𝑄𝑄 = 𝑊𝑊𝐵𝐵𝑊𝑊𝑇𝑇 = �
𝐵𝐵 ∆𝑥𝑥2 𝐵𝐵 ∆𝑥𝑥∆𝑦𝑦 𝐵𝐵 ∆𝑥𝑥∆𝜃𝜃
𝐵𝐵 ∆𝑦𝑦∆𝑥𝑥 𝐵𝐵 ∆𝑦𝑦2 𝐵𝐵 ∆𝑦𝑦∆𝜃𝜃
𝐵𝐵 ∆𝜃𝜃∆𝑦𝑦 𝐵𝐵 ∆𝜃𝜃∆𝑦𝑦 𝐵𝐵 ∆𝜃𝜃2

�  (5.4) 

𝑤𝑤ℎ𝑒𝑒𝑟𝑟𝑒𝑒 𝑊𝑊 =  �
∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃
� 

Next, the estimation error covariance matrix P becomes a crucial element to the 

EKF procedure as it contains the covariance of the robot position, landmark 

positions, the covariance between the robot and landmarks, and the covariance 

between landmarks. The estimation error covariance matrix is built 

systematically. The upper 3x3 matrix is the robot position covariance, 

represented by Prr, and is updated by the odometry model as shown in Equation 

5.5. 

𝑃𝑃𝑟𝑟𝑟𝑟 =  𝐹𝐹𝑃𝑃𝑟𝑟𝑟𝑟𝐹𝐹 + 𝑄𝑄    (5.5) 
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The robot-landmark cross covariance Pri is located in the upper 3 rows of the 

matrix, and is found using Equation 5.6. [9] 

𝑃𝑃𝑟𝑟𝑖𝑖 = 𝐹𝐹𝑃𝑃𝑟𝑟𝑖𝑖     (5.6) 

The covariance matrix P is symmetric and is defined in Equation 5.7. [9] 

𝑃𝑃− =  �𝑃𝑃
𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝑖𝑖
𝑃𝑃𝑖𝑖𝑟𝑟 𝑃𝑃𝑖𝑖𝑖𝑖

�    (5.7) 

Where Pii is the covariance of the landmark positions. Details on the state 

transition can be found in references. [5, 8, 9] 

 

5.1.3  Data Association 

To reliably associate the robot’s sensor data to its environment, a couple of data 

association methods were fused. First that of individual compatibility nearest 

neighbor (ICNN), which is a widely used technique in robotics, and an 

optimization algorithm developed in order to reconsider the best choice given the 

ICNN criteria. 

 

5.1.3.1 Individual Compatibility Nearest Neighbor 

The derivation of the ICNN algorithm is based on comparing the extracted 

features to the landmark map using Mahalonobis distance and then passing it 

through a Chi-Squared validation gate which deems them compatible. The ICNN 
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is an n x m complex algorithm, where n is the number of landmarks in the map, 

and m is the number of visible features. [21] 

To initiate the ICNN algorithm, the measurement model must first be established. 

The measurement model h for a range bearing model, where (𝜆𝜆𝑥𝑥,𝜆𝜆𝑦𝑦) are the 

landmark locations, and is defined in Equation 5.8. [31] 

ℎ =  �
𝑟𝑟𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒
𝑏𝑏𝑒𝑒𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑔𝑔� =  �

�(𝜆𝜆𝑥𝑥 − 𝑥𝑥)2 + �𝜆𝜆𝑦𝑦 − 𝑦𝑦�
2

tan−1 �𝜆𝜆𝑦𝑦−𝑦𝑦
𝜆𝜆𝑥𝑥−𝑥𝑥

� −  𝜃𝜃
�  (5.8) 

Taking the Jacobian of the predicted measurement model gives us H, which tells 

us how the range and heading change with respect to the robot state (x, y, θ). 

   𝐻𝐻 =  �

𝛿𝛿𝑟𝑟
𝛿𝛿𝑥𝑥

𝛿𝛿𝑟𝑟
𝛿𝛿𝑦𝑦

𝛿𝛿𝑟𝑟
𝛿𝛿𝜃𝜃

𝛿𝛿𝛿𝛿
𝛿𝛿𝑥𝑥

𝛿𝛿𝛿𝛿
𝛿𝛿𝑦𝑦

𝛿𝛿𝛿𝛿
𝛿𝛿𝜃𝜃

�  =  �
𝑥𝑥−𝜆𝜆𝑥𝑥
𝑟𝑟

𝑦𝑦−𝜆𝜆𝑦𝑦
𝑟𝑟

0
𝜆𝜆𝑦𝑦−𝑦𝑦
𝑟𝑟2

𝜆𝜆𝑥𝑥−𝑥𝑥
𝑟𝑟2

−1
�   (5.9) 

The innovation µ is defined by the difference between the predicted landmark 

locations h from Equation 5.10 and the LIDAR measurement z. 

𝜇𝜇 = 𝑧𝑧 − ℎ     (5.10) 

The measurement noise R reflects the range and bearing error associated with 

the LIDAR sensor. The measurement noise is represented by a 2x2 diagonal 

matrix with the upper left value representing the range multiplied by the percent 

error c in the distance, and the lower diagonal value representing the bearing 

error. [5] 

𝑅𝑅 =  �𝑟𝑟𝑐𝑐 0
0 𝑏𝑏𝑑𝑑�    (5.11) 
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Before the Mahalonobis distance between the measured features and landmark 

map can be calculated, the innovation covariance must first be computed using 

the Jacobian of the measurement model H, error covariance P, and the 

measurement noise R. 

𝑆𝑆 =  𝐻𝐻𝑃𝑃−𝐻𝐻𝑇𝑇 + 𝑅𝑅    (5.12) 

The squared Mahalonobis distance can now be defined using the innovation and 

associated covariance as shown in Equation 5.13. [21] 

𝐷𝐷𝑖𝑖𝑖𝑖2 =  𝜇𝜇𝑇𝑇𝑆𝑆−1𝜇𝜇    (5.13) 

Being that the Mahalonobis distance follows a Chi-Squared distribution, we 

compare the calculated distance to a Chi-Squared distributed variate with two 

degrees of freedom with a 95% cumulative probability α. [32] 

𝐷𝐷𝑖𝑖𝑖𝑖2 <  𝜒𝜒𝑑𝑑,𝛼𝛼
2      (5.14) 

If the validation gate is satisfied, the landmark-feature pair is passed to be a 

highly probable match. The validation gate can pass more than one feature to 

one landmark if features are dense or spurious. [33] 

 

5.1.3.2 Compatibility Optimization 

Because more than one feature can be associated to one landmark using the 

ICNN, additional consideration is necessary. To rectify any spurious 

associations, an optimal selection algorithm was developed. Optimization can 
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have a similar complexity to that of the ICNN, but typically is much smaller, as no 

more than a couple of features are typically individually compatible with a 

landmark. 

Since the ICNN is a greedy algorithm, it never reconsiders potential matches, 

instead accepting the first acceptable match which can be problematic. In the 

developed algorithm, multiple feature matches are reconsidered such that the 

minimum Maholanobis distance is taken as the associated feature to the 

landmark in question.  

 

5.1.4 Measurement Update 

The robot state estimate obtained from the motion model is not reliable due to 

the error attributed to the odometry. In order to compensate for these errors, the 

landmark measurements associated to the landmark map is used to correct the 

state. 

The Kalman gain K is calculated as a weighted compensation between the 

motion model prediction and measurement update. 

𝐾𝐾 =  𝑃𝑃−𝐻𝐻𝑇𝑇(𝑆𝑆)−1    (5.15) 

The robot state update can now be computed using the Kalman gain and 

innovation. The process is repeated for each feature that has been matched to a 

landmark using the ICNN algorithm, updating the feature map based on the 

observations and motion model. 



 
44 

 

𝑋𝑋𝑡𝑡+1 =  𝑋𝑋− + 𝐾𝐾𝜇𝜇    (5.16) 

Lastly, the error covariance is updated to reflect the measurement update. 

𝑃𝑃𝑡𝑡+1 = (𝐼𝐼 –𝐾𝐾𝐻𝐻)𝑃𝑃−    (5.17) 

The EKF state estimation localization has been defined, and is now repeated for 

each subsequent LIDAR scan, constantly updating the robot state. Details on the 

measurement update can be found in references [34, 35, 36]. 

 

5.2 Summary 

A state estimation algorithm has been applied in the form of the EKF coupled 

with the ICNN data association algorithm. The EKF creates error from the 

odometry data due to slipping of the differential drive, and from poor bearing 

estimation from the measurement update of the EKF due to low landmark density 

in the tunnel. Tuning of the EKF to more heavily rely on the LIDAR 

measurements was instituted, but was found to not be accurate enough to 

reduce the bearing error to an acceptable level where Abbe error would not 

accumulate. By neglecting the EKF bearing update and using the wall as a 

bearing landmark when observed, error was reduced to a level where the EKF 

would no longer diverge.  
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Chapter 6 

Simulation 

 

In this chapter the LabVIEW robotics module simulator and function library are 

examined. The vehicle model, feature acquisition, localization concepts and 

techniques are implemented using this software. Results from the simulator 

testing is presented and the effectiveness of the techniques selected is reviewed. 

 

6.1 LabVIEW Robotics 

Due to availability and timing constraints in the beam tunnel, it was decided that 

simulating the localization algorithm would be the best path forward to provide 

validation and feasibility of deployment during beam production. Given that 

LabVIEW software was already being used in conjunction with a National 

Instruments cRIO to control the robot and the ability to go from the simulation to 

hardware with few changes to the software, made the LabVIEW robotics module 

simulator an attractive option. Therefore, it was selected as the robot simulation 

package for the project. Included in the package is a robotics simulation 

environment and function library. 

The LabVIEW robotics simulator is based on the Open Dynamics Engine [37], a 

physics-based library for simulating rigid body dynamics. The simulator consists 

of three main aspects that allows the testbed to resemble the beam tunnel 
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environment; a CAD model importer, robot model builder, and the robotics 

environment simulator wizard. 

Prior to using the simulator, CAD models had to be created of both the beam 

tunnel and the robot, which was done using SolidWorks. To import the CAD 

models of the beam tunnel and the robot, unnecessary detail had to be removed 

and the polygonal mesh had to be decimated to keep the file size limited and 

allow the simulation to run efficiently. The CAD model importer was then used to 

insert the robot and beam tunnel environment models into the LabVIEW robotics 

simulator. The robot model builder allowed the addition of the robot chassis 

selected, including the LIDAR sensor, joint definition for the differential drive 

components, and an origin of axis. The environment in which the robot will 

operate is also incorporated using the robotics environment simulator wizard, 

where axes are specified and obstacles (similar to what would be seen in the 

tunnel during normal operation) are added. 

 

Figure 6.1: LabVIEW Robotics Simulation Front Panel 
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In addition to the simulator, the robotics module includes robotics specific 

function libraries, facilitating rapid development of robot design [38]. Because of 

the nature of the proposed localization strategy, all of the algorithms used had to 

be developed from the ground up.   

 

6.2 Simulation Results 

Results of the LabVIEW robotics simulation will be discussed in this section, and 

errors in the results will be addressed and analyzed. The EKF tested was 

incorporated as discussed in chapter 5 with the sensors discussed in chapter 3. 

To obtain results, the robot was operated through an environment similar to the 

beam tunnel as it would during a typical deployment. A cross section of the beam 

tunnel can be seen  

 

As the robot traversed the beam tunnel it was able to consistently extract 

features, and correctly associate them to the landmark map, thus updating the 

robot state with relatively little error.  

In order to gauge the effectiveness of the localization algorithm, Euclidean 

distance is calculated between the estimated robot position and the ground truth 

along with the absolute difference in heading as described by Chen and shown in 

Equations 6.1 & 6.2. [8] 
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𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑝𝑝 =  ��𝑥𝑥𝑟𝑟,𝑒𝑒 − 𝑥𝑥𝑔𝑔𝑡𝑡�
2

+  �𝑦𝑦𝑟𝑟,𝑒𝑒 −  𝑦𝑦𝑔𝑔𝑡𝑡�
2   (6.1) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝜃𝜃 =  �𝜃𝜃𝑟𝑟,𝑒𝑒  −  𝜃𝜃𝑔𝑔𝑡𝑡�    (6.2) 

As can be seen in Figure 6.2 the positional error varies due to the odometry error 

and increases in areas where landmarks are sparse. At the end of the sector, 

where landmarks are dense, the positional error decreased significantly. For the 

entire run, the greatest positional error accumulated was less than 0.3 meters. 

 

Figure 6.2: Positional Error 

The heading error is minimized by using the walls in the tunnel as described in 

section 4.3.3. Without the wall extraction algorithm added to the EKF the heading 

would diverge, contributing to the Abbe error in the robot position, causing the 

EKF to diverge further. As shown in figure 6.3 the heading error grows when the 

robot maneuvers 180 degrees at the end of the tunnel and no longer observes 

the wall with the LIDAR as a reference but is then corrected once the wall is 

observed again. 



 
49 

 

 

Figure 6.3: Heading Error 

In the simulation, true robot position is known, which allows for algorithm 

performance measurements as the estimated position can be measured against 

the actual position providing absolute error for the robot state. The robot path 

(blue) and the robot’s ground truth (green) is graphed in figure 6.4 using 

Equations 6.1 and 6.2 to show the accuracy of the EKF as a localization method 

in a mapped representation. Along with the robot path, the landmarks are 

displayed to show how error grows when the robot is relying purely on odometry 

data.  

 

Figure 6.4: Ground Truth vs. Estimated Tracked Position 
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Chapter 7 

Conclusion 

 

The LabVIEW robotics simulator is used to demonstrate the viability of self-

localization in a known environment using LIDAR. The strategy and 

implementation of the EKF, landmark extraction, and data association is 

reviewed and the path forward for future work is discussed. 

 

7.1 Summary 

The objective of this thesis was to develop a self-localization strategy for a 

differential drive robot in the LANSCE LINAC beam tunnel. Given the knowledge 

about the environment in the tunnel, a decision had to be made to determine the 

direction of the method of which localization was to be realized. After extensive 

research and following various paths, the extended Kalman filter was chosen as 

the best choice for the application as the positional estimator.  

Implementation of the EKF as a state estimator for the robot in the simulator 

shows potential with ideal conditions and well-known initial conditions. The robot 

would show error accumulation between landmarks as they are fairly sparse in 

the tunnel. It was also found that the EKF is sensitive to the heading of the robot 

in maintaining its position regardless of landmark density. The Abbe error is 

credited to the poor odometry accuracy of a differential drive robot during turning 
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maneuvers due to slippage. Heading error was kept to a minimum by making the 

wall an absolute reference regardless of what the EKF estimated. With the Abbe 

error minimized, the robot was capable of tracking its position with relatively low 

error without diverging. 

 

7.2 Future Work 

With promising simulation results using the proposed strategy for localization, 

testing in the tunnel on hardware would be the desired next step. Because the 

simulated environment was stripped down, and relatively obstacle free, the actual 

tunnel will need to be mapped to provide an accurate reference for the EKF to 

use when implemented.  

Future work will also include studies for facilitating full robot autonomy. 

Navigation and obstacle avoidance studies are the two main focuses in achieving 

autonomy past localization. In parallel with realizing autonomy, additional beam 

diagnostic sensors will need to be studied in order to maximize the potential to 

provide substantial measurements in determining beam status to operators as 

well.



 
52 

 

Appendix A 

Localization Flowchart 
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